国产v亚洲v天堂无码久久无码_久久久久综合精品福利啪啪_美女扒开尿口让男人桶_国产福利第一视频在线播放_滨崎步无码AⅤ一区二区三区_三年片免费观看了_大屁股妇女流出白浆_泷川苏菲亚无码AV_我想看我想看一级男同乱伦_国产精品午夜福利免费视频,gogo国模全球大胆高清摄影图,2008门艳照全集视频,欧美午夜在线精品品亚洲AV中文无码乱人伦在线播放

One paper accepted in KDD 2017
來源: 楊沛/
華南理工大學(xué)
3268
5
0
2017-06-01

Our paper is accepted in 23st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (Research Track). Halifax, Nova Scotia, Canada.

August 13-17, 2017. (Acceptance rate = 131/748 = 17.5%).


Title: Multi-task Function-on-function Regression with Co-grouping Structured Sparsity. 

Authors: Pei Yang, Qi Tan, Jingrui He.

Abstract: The growing importance of functional data has fueled the rapid development of functional data analysis, which treats the infinite-dimensional data as continuous functions rather than discrete, finite-dimensional vectors. On the other hand, heterogeneity is an intrinsic property of functional data due to the variety of sources to collect the data. In this paper, we propose a novel multi-task function-on-function regression approach to model both the functionality and heterogeneity of data. The basic idea is to simultaneously model the relatedness among tasks and correlations among basis functions by using the co-grouping structured sparsity to encourage  similar tasks to behave similarly in shrinking the basis functions. The resulting optimization problem is challenging due to the non-smoothness and non-separability of the co-grouping structured sparsity. We present an efficient algorithm to solve the problem, and prove its separability, convexity, and global convergence. The proposed algorithm is applicable to a wide spectrum of structured sparsity regularized techniques, such as structured $\ell_{2,p}$ norm and structured Schatten $p$-norm. The effectiveness of the proposed approach is verified on benchmark functional data sets.


All accepted papers in KDD 2017:

http://www.kdd.org/kdd2017/accepted-papers


登錄用戶可以查看和發(fā)表評(píng)論,, 請(qǐng)前往  登錄 或  注冊(cè)
SCHOLAT.com 學(xué)者網(wǎng)
免責(zé)聲明 | 關(guān)于我們 | 聯(lián)系我們
聯(lián)系我們: