国产v亚洲v天堂无码久久无码_久久久久综合精品福利啪啪_美女扒开尿口让男人桶_国产福利第一视频在线播放_滨崎步无码AⅤ一区二区三区_三年片免费观看了_大屁股妇女流出白浆_泷川苏菲亚无码AV_我想看我想看一级男同乱伦_国产精品午夜福利免费视频,gogo国模全球大胆高清摄影图,2008门艳照全集视频,欧美午夜在线精品品亚洲AV中文无码乱人伦在线播放

李健

講師/Lecturer

信陽師范學(xué)院 計(jì)算機(jī)與信息技術(shù)學(xué)院

神經(jīng)動(dòng)力學(xué) , 機(jī)械臂控制 , 深度強(qiáng)化學(xué)習(xí)

簡介  ABOUT

動(dòng)態(tài)   NEWS

學(xué)術(shù)   ACADEMIC

李健,,博士,,信陽師范學(xué)院計(jì)算機(jī)與信息技術(shù)學(xué)院講師。主要從事神經(jīng)動(dòng)力學(xué),、機(jī)械臂控制,、深度強(qiáng)化學(xué)習(xí)方向研究,,以第一作者發(fā)表SCI論文12篇,其中中科院1區(qū)論文5篇,,主持國家自然科學(xué)青年基金1項(xiàng),、中國博士后科學(xué)基金1項(xiàng),參與國家自然科學(xué)基金面上項(xiàng)目1項(xiàng),。

項(xiàng)目成果:

[1] 機(jī)械臂控制中不同層時(shí)變問題求解的神經(jīng)動(dòng)力學(xué)研究(編號(hào):62006205),,國家自然科學(xué)基金,2021/01-2013/12,,30萬,,在研,主持

[2] 動(dòng)態(tài)環(huán)境中強(qiáng)時(shí)空約束的艦載機(jī)保障作業(yè)調(diào)度研究(項(xiàng)目編號(hào):2021TQ0299),,中國博士后科學(xué)基金第3批特別資助(站前),,2021.1.1-2022.12.31,18萬,,在研,,主持

[3] 基于高精度時(shí)間離散公式與神經(jīng)動(dòng)力學(xué)的未來時(shí)變問題求解,國家自然科學(xué)基金,, 2020/01-2013/12,,60萬,在研,,參與

論文成果:

[1] Jian Li, Yang Shi, Hejun Xuan. Unified model solving nine types of time-varying problems in the frame of zeroing neural network, IEEE Transactions on Neural Networks and Learning System, 2021, 32(5): 1896-1905.(中科院1區(qū))

[2] Jian Li, Xinhui Zhu, Yang Shi, Jing Wang, Huaping Guo. Real-time robot manipulator tracking control as multilayered time-varying problem, Applied Mathematical Modelling 96 (2021) 355–366. (中科院2區(qū))

[3] Jian Li, Yunong Zhang, Mingzhi Mao. Continuous and discrete zeroing neural network for different-level dynamic linear system with robot manipulator control, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50: 4633-4642. (中科院1區(qū))

[4] Jian Li, Mingzhi Mao, Yunong Zhang, Binbin Qiu. Different-level algorithms for control of robotic systems, Applied Mathematical Modelling, 2020, 77: 922-933. (中科院2區(qū))

[5] Jian Li, Ruiling Yao, Yan Feng, Shasha Wang, Xinhui Zhu. Zeroing neural network for solving hybrid multilayered time-varying linear system, IEEE Access, 2020, 8: 199406-199414.(中科院2區(qū))

[6] Jian Li, Yunong Zhang, Mingzhi Mao. General square-pattern discretization formulas via second-order derivative elimination for zeroing neural network illustrated by future optimization, IEEE Transactions on Neural Networks and Learning System, 2019, 30(3): 891-901.(中科院1區(qū))

[7] Jian Li, Yunong Zhang, Mingzhi Mao. Five-instant type discrete-time ZND solving discrete time-varying linear system, division and quadratic programming, Neurocomputing, 2019, 331: 323-335. (中科院2區(qū))

[8] Jian Li, Mingzhi Mao, Frank Uhlig, Yunong Zhang. A 5-instant finite difference formula to find discrete time-varying generalized matrix inverses, matrix inverses, and scalar reciprocals, Numerical Algorithms, 2019, 81: 609-629. (中科院2區(qū))

[9] Jian Li, Yunong Zhang, Shuai Li, Mingzhi Mao. New discretization formula based zeroing dynamics for real-time tracking control of serial and parallel manipulators, IEEE Transactions on Industrial Informatics, 2018, 14(8): 3416-3425. (中科院1區(qū))

[10] Jian Li, Mingzhi Mao, Frank Uhlig, Yunong Zhang. Z-type neural-dynamics for time-varying nonlinear optimization under a linear equality constraint with robot application, Journal of Computational and Applied Mathematics, 2018, 327: 155-166. (中科院2區(qū))

[11] Jian Li, Mingzhi Mao, Yunong Zhang, Dechao Chen, Yonghua Yin. ZD, ZG and IOL controllers and comparisons for nonlinear system output tracking with DBZ problem conquered in different relative-degree cases, Asian Journal of Control, 2017, 19(4): 1482-1495. (中科院3區(qū))

[12] Li Jian, Mao Mingzhi, Zhang Yunong. Simpler ZD-achieving controller for chaotic systems synchronization with parameter perturbation, model uncertainty and external disturbance as compared with other controllers[J]. Optik, 2017, 131: 364-373. (中科院4區(qū))

[13] Xinhui Zhu, Li Zhang, Yang Shi, Jing Wang, Jian Li(*), Robot manipulator control via solving four-layered time-variant equations including linear, nonlinear equalities and inequalities, in Proceedings of 11th International Conference on Intelligent Control and Information Processing (ICICIP), Dali, China, December 3-7, 2021.

CONTACT Me
Scholat.com/jli865
河南省信陽市237號(hào)
我的主頁
獲取微信名片
SCHOLAT.com 學(xué)者網(wǎng)
ABOUT US | SCHOLAT